

Fakultät für Elektrotechnik und Informatik Institut für Verteilte Systeme AG Intelligente Systeme - Data Mining group

Data Mining I

Summer semester 2019

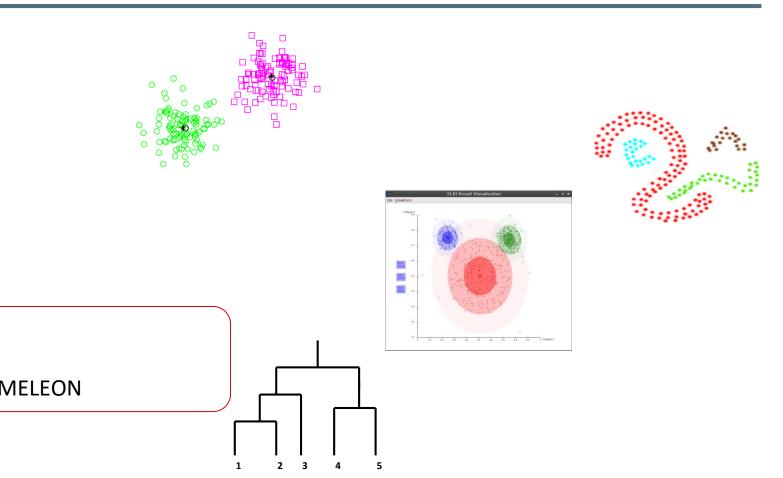
Lecture 11: Clustering – 2: Hiearchical clustering

Lectures: Prof. Dr. Eirini Ntoutsi

TAs: Tai Le Quy, Vasileios Iosifidis, Maximilian Idahl, Shaheer Asghar

Clustering topics covered in DM1

- 1. Partitioning-based clustering
 - kMeans, kMedoids
- 2. Density-based clustering
 - DBSCAN
- 3. Grid-based clustering
- 4. Hierarchical clustering
 - 1. Diana, Agnes, BIRCH, ROCK, CHAMELEON
- 5. Clustering evaluation



Outline

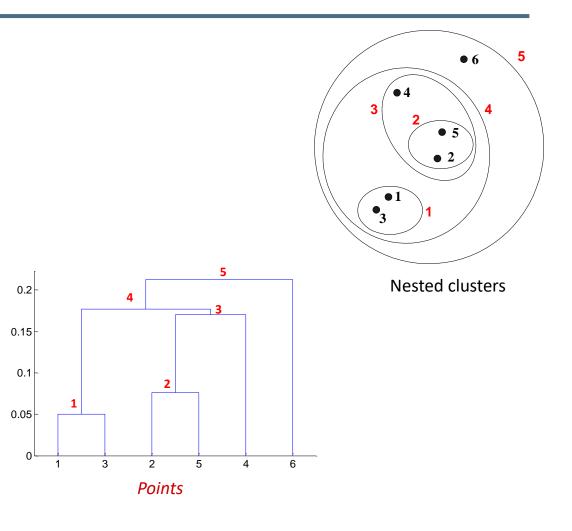
- Hierarchical clustering
- Bisecting k-Means
- An overview of clustering
- Homework/tutorial
- Things you should know from this lecture

Outline

- Hierarchical clustering
- Bisecting k-Means
- An overview of clustering
- Homework/tutorial
- Things you should know from this lecture

Hierarchical-based clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized also as a dendrogram
 - A tree like diagram that records the *sequences* of merges or splits & cluster memberships
 - The height at which two clusters are merged in the dendrogram reflects their distance
- An instance can belong to multiple clusters.
 - The assignement though is still hard

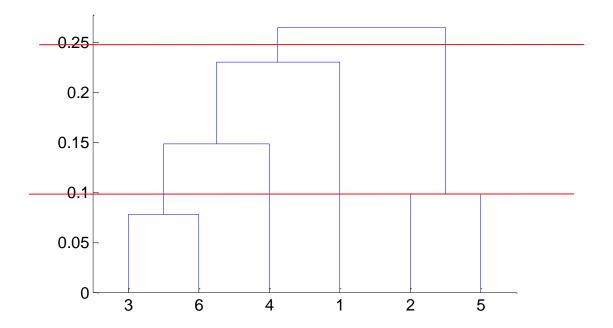


Dendrogram

Distance

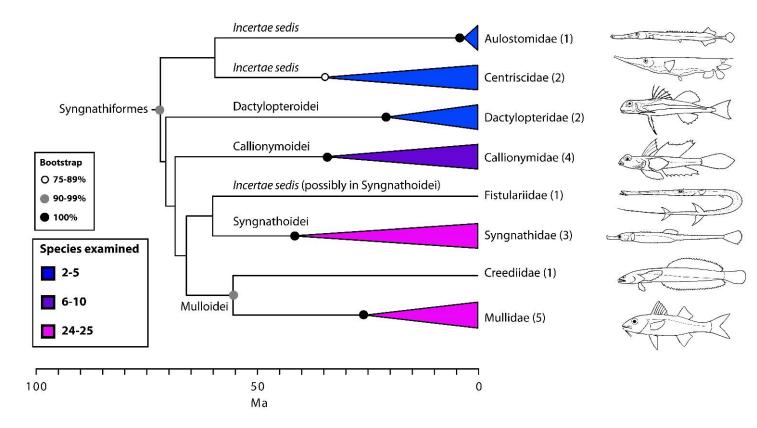
Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
- A clustering can be obtained by 'cutting' the dendrogram at the proper level
 - Cutting based on distance (i.e., I want \leq 0.1 distance)
 - Cutting based on the number of clusters (i.e., I want 2 clusters)



Applications of hierarchical clustering 1/3

- The dendrogram of clusters may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

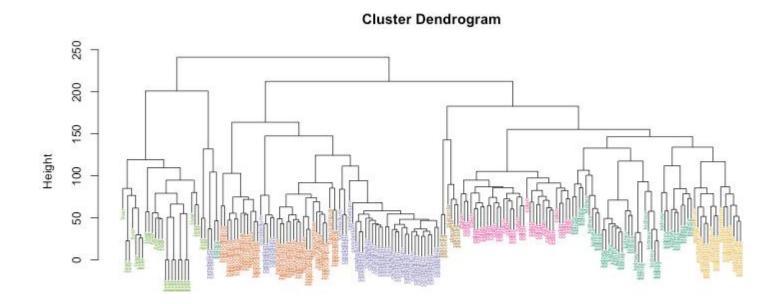


Source: http://currents.plos.org/treeoflife/article/the-tree-of-life-and-a-new-classification-of-bony-fishes/

Data Mining I @SS19: Clustering 3

Applications of hierarchical clustering 2/3

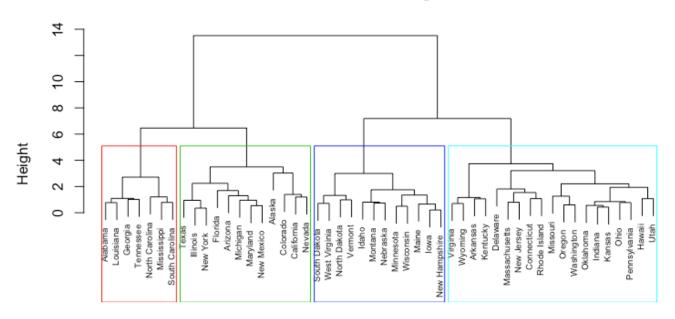
- The dendrogram of clusters may correspond to meaningful taxonomies
 - Dendrogram showing hierarchical clustering of tissue gene expression data with colours denoting tissues.



Source: http://genomicsclass.github.io/book/pages/clustering_and_heatmaps.html

Applications of hierarchical clustering 3/3

- The dendrogram of clusters may correspond to meaningful taxonomies
 - USArrests dataset: statistics in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973.



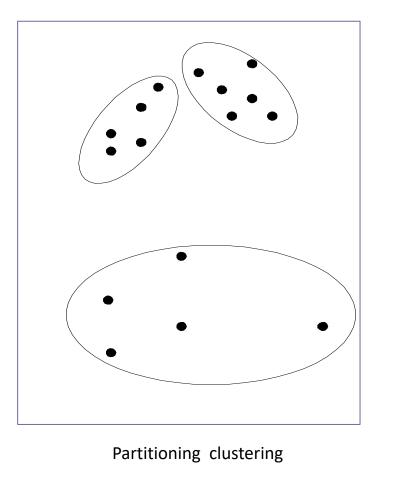
Cluster Dendrogram

d hclust (*, "ward.D2")

Data Mining I @SS19: Clustering 3

Source: https://uc-r.github.io/hc_clustering

Hierarchical vs Partitioning



Partitioning algorithms typically have global objectives e.g., *k*-Means

•p1 •p~ p4 p2 Nested clusters p1 p2 p3 p4

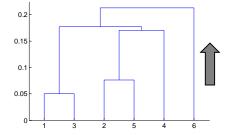
Dendrogram

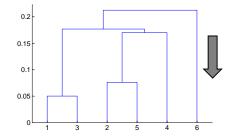
Hierarchical clustering algorithms typically have local objectives

Data Mining I @SS19: Clustering 3

Hierarchical clustering methods

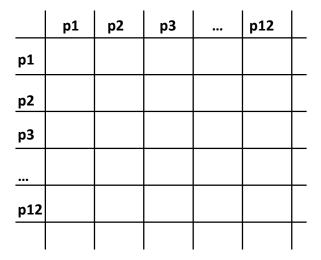
- Two main types of hierarchical clustering
 - Agglomerative or AGNES (Agglomerative Nesting):
 - Bottom-up approach
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters
 - until only one cluster (or *k* clusters) left
 - Divisive or DIANA (Divisive analysis):
 - Top-down approach
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a single point (or there are k clusters)
 - Merge or split <u>one</u> cluster at a time





Hierarchical clustering methods

- Traditional hierarchical algorithms use a similarity or distance matrix to decide on which cluster to split/merge next
 - Employed distance/similarity function depends on the application

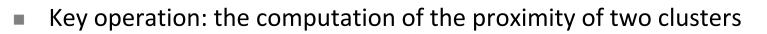


Proximity matrix

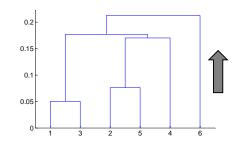
Agglomerative clustering algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward

1.	Compute the proximity matrix
2.	Let each data point be a cluster
3.	Repeat
4.	Merge the two closest clusters
5.	Update the proximity matrix
6.	Until only a single cluster remains

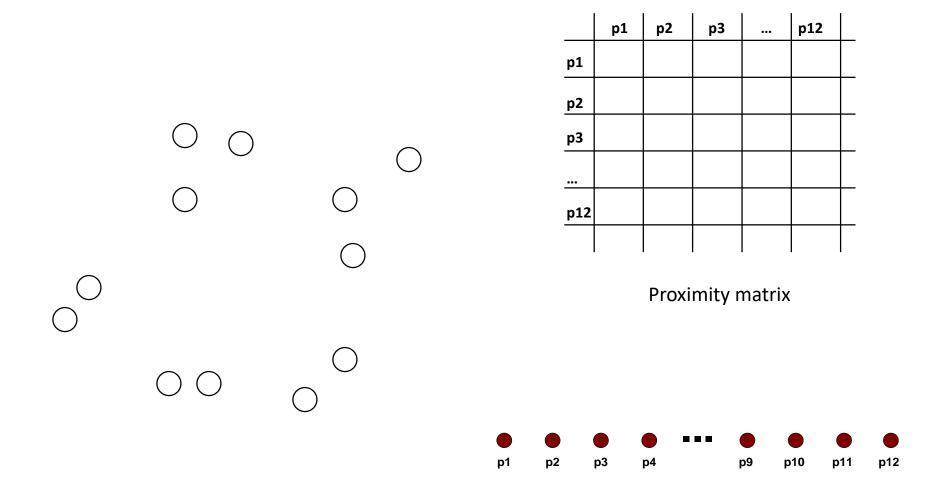


Different approaches (single link, complete link,) which lead to different algorithms



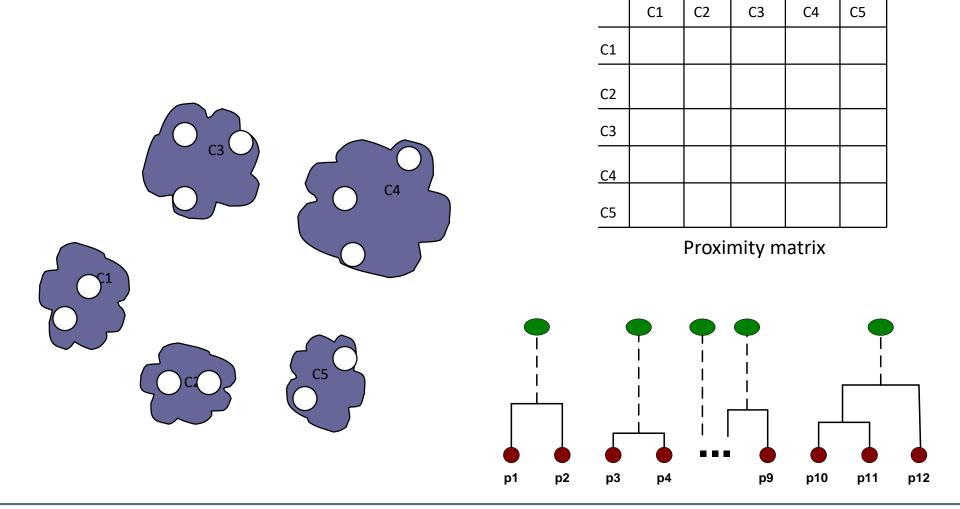
Starting situation

Start with clusters of individual points and a proximity matrix



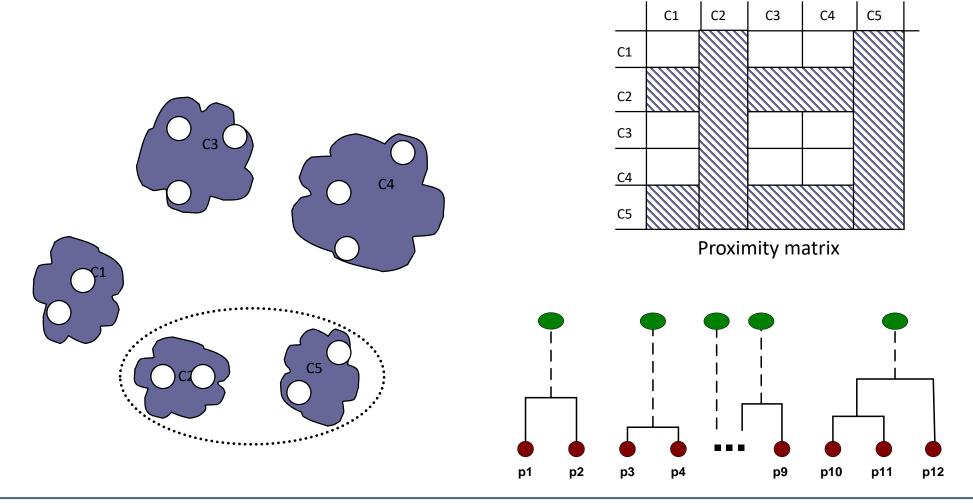
Intermediate situation I

• After some merging steps, we have some clusters



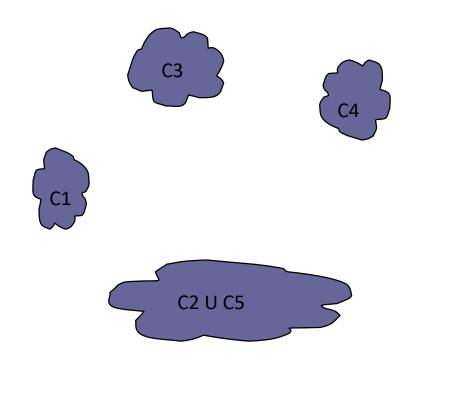
Intermediate situation II

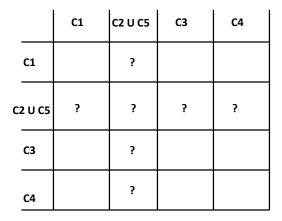
• We want to merge the two closest clusters (C_2 and C_5) and update the proximity matrix.



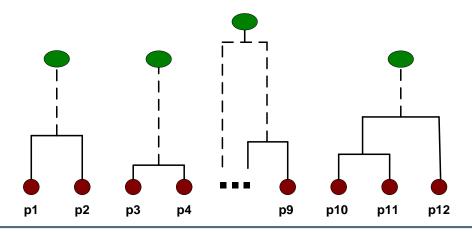
Merging

- Two major questions for merging
 - How we identify the closest pair of clusters to be merged?
 - How do we update the proximity matrix?



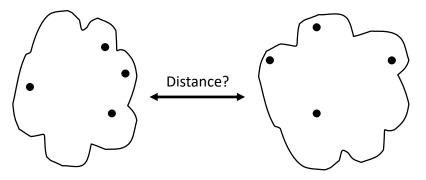


Proximity matrix



Distance between clusters

- Each cluster is a set of points
 - How do we compare two sets of points/clusters?



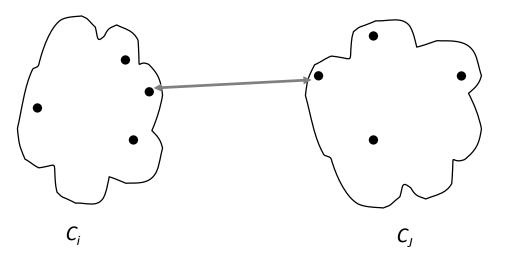
- A variety of different methods
 - □ Single link (or MIN)
 - Complete link (or MAX)
 - Group average
 - Distance between centroids
 - Distance between medoids
 - Other methods driven by an objective function
 - Ward's Method uses squared error

Distance between clusters: Single link distance or MIN

Single link (or MIN) distance between C_i and C_j is the minimum distance between any object in C_i and any object in C_j, i.e.,

$$dis_{sl}(C_i, C_j) = \min_{x, y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

• i.e., the distance is defined by the two closest objects (shortest edge)

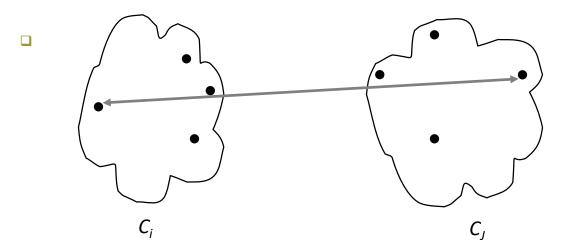


Distance between clusters: Complete link or MAX

Complete link (or MAX) distance between C_i and C_j is the maximum distance between any object in C_i and any object in C_j, i.e.,

$$dis_{cl}(C_i, C_j) = \max_{x, y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

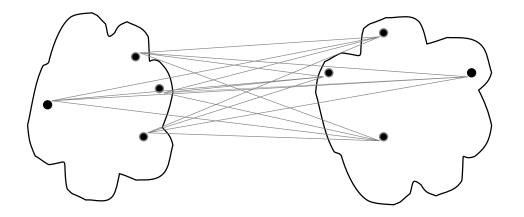
• i.e., the distance is defined by the two most dissimilar objects (longest edge)



Distance between clusters: Group average

Group average distance between C_i and C_j is the average distance between any object in C_j and any object in C_j, i.e.,

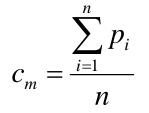
$$dis_{avg}(C_i, C_j) = \frac{\sum_{x \in C_i, y \in C_j} d(x, y)}{|C_i| |C_j|}$$

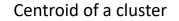


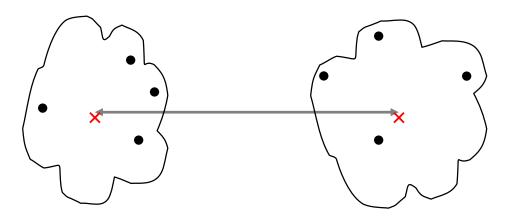
Distance between clusters: Centroid distance

Centroid distance between C_i and C_j is the distance between the centroid c_i of C_i and the centroid c_j of C_j, i.e.,

$$dis_{centroids}(C_i, C_j) = d(c_i, c_j)$$



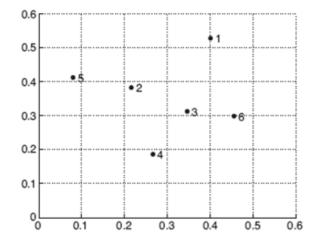




Example

Dataset (6 2D points)

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
p3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
p6	0.45	0.30



Distance matrix (Euclidean distance)

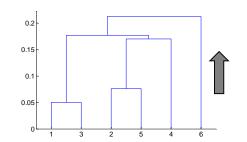
	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Back to the pseudocode of the agglomerative clustering algorithm

Pseudocode of the algorithm

1. Compute the proximity m	matrix
----------------------------	--------

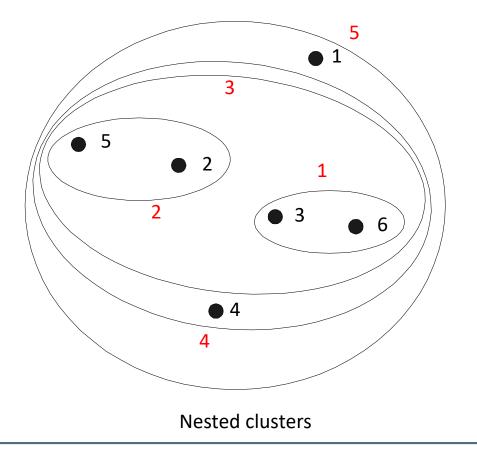
- 2. Let each data point be a cluster
- 3. Repeat
- 4. Merge the two closest clusters
- 5. Update the proximity matrix
- 6. **Until** only a single cluster remains



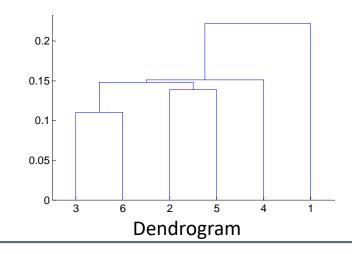
Single link distance or MIN agglomerative clustering algorithm

 $dis_{sl}(C_i, C_j) = \min_{x, y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$

- Similarity of two clusters is based on the most similar (closest) pair of objects
 - Determined by <u>one</u> pair of points



	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00



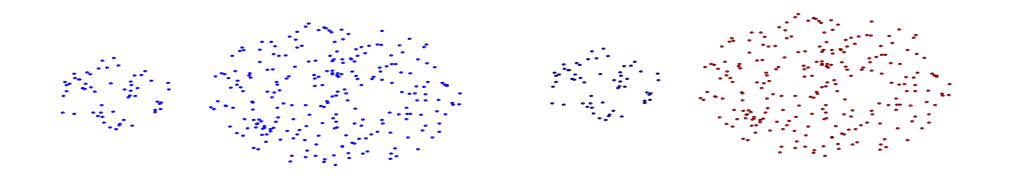
Short break (5')

Given the following 1-dimensional dataset, build a hierarchical agglomerative clustering using single-link distance

5	11 13	16	25	36 38 39	42	60 62 64 67

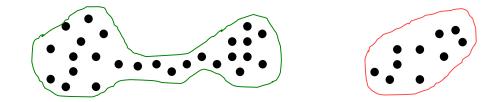
Single link distance (MIN): strengths

• Can discover clusters of arbitrary shapes



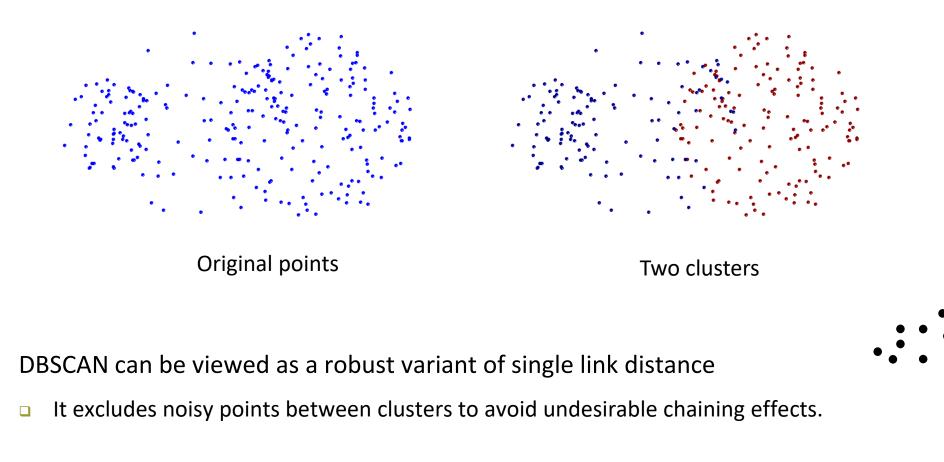
Original points

Two clusters



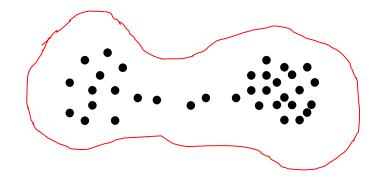
Single link distance (MIN): limitations

Sensitive to noise and outliers



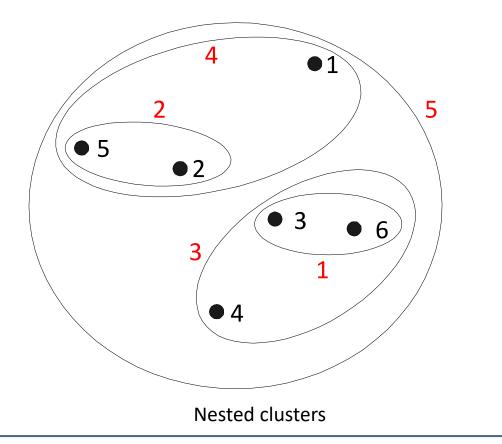
Single link distance (MIN): limitations

Produces long, elongated clusters (chain-like clusters)

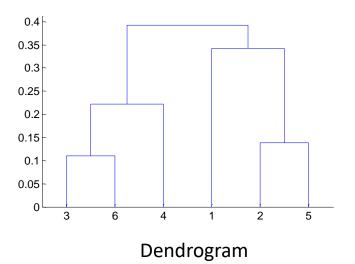


Complete link distance or MAX agglomerative clustering algorithm

- Similarity of two clusters is based on the least similar (most distant) pair of objects
 - Determined by <u>one</u> pair of points $dis_{cl}(C_i, C_j) = \max_{x,y} \{ d(x, y) | x \in C_i, y \in C_j \}$

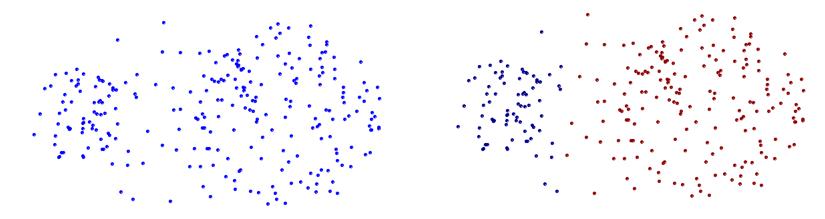


	p1	p2	$\mathbf{p3}$	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00



Complete link distance (MAX): strengths

Less susceptible to noise and outliers and comparing to MIN

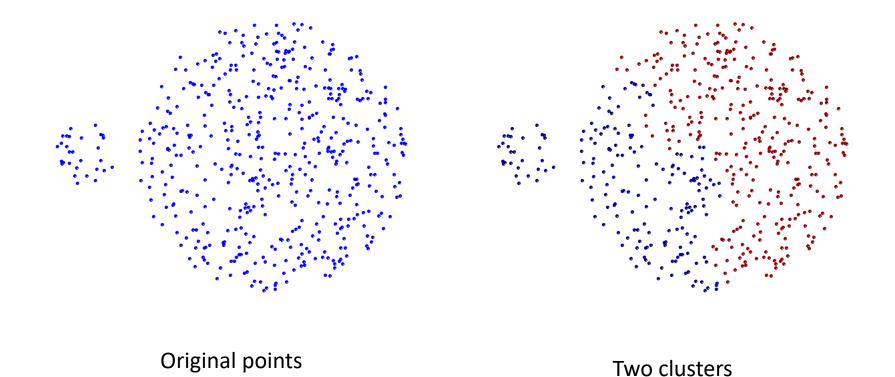


Original points

Two clusters

Complete link distance (MAX): limitations

- Because it focuses on minimizing the diameter of the cluster, it will create clusters so that all of them have similar diameter
 - If there are natural larger clusters than others, it tends to break large clusters



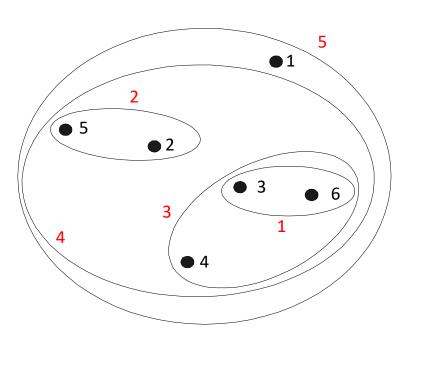
Short break (5')

Given the following 1-dimensional dataset, build a hierarchical agglomerative clustering using complete-link distance

5	11 13	16	25 3	36	38 39	42	60 62 64 67	

(Group) Average-link distance agglomerative clustering algorithm

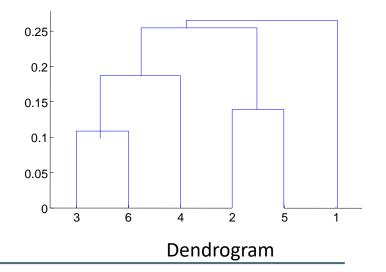
- Proximity of two clusters is the average of pairwise distances between objects in the two clusters.
 - Determined by <u>all pairs</u> of points in the two clusters



Nested clusters

 $dis_{avg}(C_i, C_j) = \frac{\sum_{x \in C_i, y \in C_j} d(x, y)}{|C|^{|C|}}$

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00



(Group) Average-link distance: strengths and limitations

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

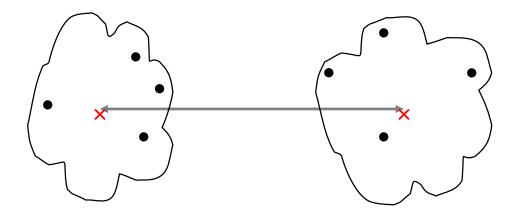
- Limitations
 - Biased towards spherical clusters

Centroid-link distance agglomerative clustering algorithm

The distance between two clusters is the distance of their corresponding centroids

$$dis_{centroids}(C_i, C_j) = d(c_i, c_j)$$

- Difference to other measures (often considered bad): the possibility of inversions
 - Two clusters that are merged at step k might be more similar than the pair of clusters merged in step k-1
 - For the other methods, distance between clusters monotonically increases (or at worst does not increase)



Ward's method

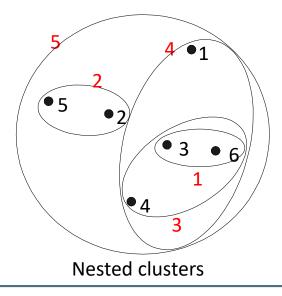
- Ward's method or Ward's minimum variance method
- Clusters are represented by centroids
- The proximity between two clusters is measured in terms of the increase in SSE (sum of squared error) that results from merging the two clusters

$$D_W(C_i, C_j) = \sum_{x \in C_i} (x - r_i)^2 + \sum_{x \in C_j} (x - r_j)^2 - \sum_{x \in C_{ij}} (x - r_{ij})^2$$

r_i: centroid of C_i r_j: centroid of C_j r_{ii}: centroid of C_{ii}

 At each step, merge the pair of clusters that leads to minimum increase in total *inter-cluster variance* after merging.

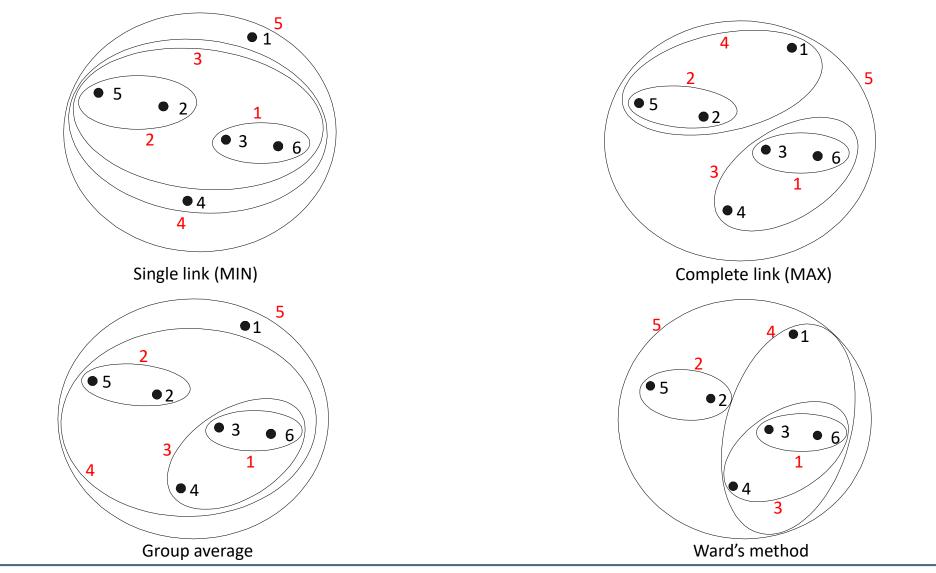
	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
p3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00



Ward's method cont'

- Ward's method seems similarly to k-Means: it tries to minimize the sum of square distances of points from their cluster centroids, but not globally
- Less susceptible to noise and outliers
- Biased towards spherical clusters

Comparison of the different methods



Data Mining I @SS19: Clustering 3

Hierarchical methods: complexity

- $O(N^2)$ space to store the proximity matrix
 - *N* is the number of points.

- O(N³) time in most of the cases
 - There are N steps and at each step the size, N^2 , proximity matrix must be updated and searched
 - Complexity can be reduced to $O(N^2 \log(N))$ time for some approaches using appropriate data structures

Hierarchical clustering: overview

- No knowledge on the number of clusters
- Produces a hierarchy of clusters, not a flat clustering
 - A single clustering can be obtained from the dendrogram
- No backtracking: Merging decisions are final
 - Once a decision is made to combine two clusters, it cannot be undone
- Lack of a global objective function
 - Decisions are local, at each step
 - No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Breaking large clusters
 - Difficulty handling different sized clusters and convex shapes
- Inefficiency, especially for large datasets

- Hierarchical clustering
- Bisecting k-Means
- An overview of clustering
- Homework/tutorial
- Things you should know from this lecture

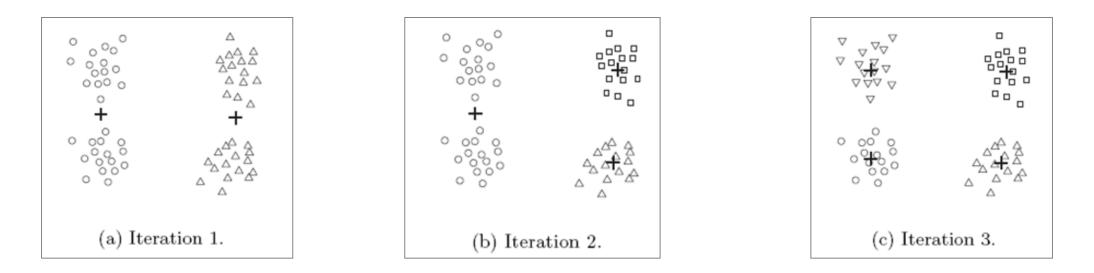
Bisecting k-Means

- Hybrid method, combines k-Means and hierarchical clustering
- Idea: first split the set of points into two clusters, select one of these clusters for further splitting, and so on, until k clusters remain.
- Pseudocode:
- All data constitute one cluster ROOT.
 The ROOT is partitioned in two clusters, its children, using K-Means for K=2.
 In each subsequent iteration

 Choose among the leaf clusters the most inhomogeneous one,
 Partition it into two clusters with K-Means, K=2, until K leaf clusters are built.
- Which cluster to split?
 - The one with the largest SSE (worse one)
 - Based on SSE and size
 - …

Bisecting k-Means

An example



- Hierarchical clustering
- Bisecting k-Means
- An overview of clustering
- Homework/tutorial
- Things you should know from this lecture

An overview on clustering

- Intuitively, a cluster is a set of data objects that are similar to one another within the same cluster and dissimilar to the objects in other clusters
- Cluster analysis: Find similarities between data according to the characteristics found in the data and group similar data objects into clusters
- Key points in clustering
 - Similarity/ distance function
 - Learning algorithm
- An unsupervised learning task
 - No clues on the number of clusters, nor in the characteristics of these clusters
- Important DM task: as a stand-alone tool or as a preprocessing step
- A large amount of algorithms
 - Partitioning methods
 - Hierarchical methods
 - Density-based methods
 - Model-based methods
 -

- Hierarchical clustering
- Bisecting k-Means
- An overview of clustering
- Homework/tutorial
- Things you should know from this lecture

Homework/ tutorial

- Homework
 - Use the Elki data mining tool to experiment with clustering algorithms <u>http://elki.dbs.ifi.lmu.de/</u>
 - Or Python/ Weka (more limited w.r.t. clustering)
- Readings:
 - Tan P.-N., Steinbach M., Kumar V book, Chapter 8.
 - Data Clustering: A Review, <u>https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf</u>
 - Nando de Freitas youtube video: https://www.youtube.com/watch?v=voN8omBe2r4

- Hierarchical clustering
- Bisecting k-Means
- An overview of clustering
- Homework/tutorial
- Things you should know from this lecture

Homework/ tutorial

- Hierarchical clustering basics
- Agglomerative approach
- Similarity measures between clusters
- Bisecting kMeans