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Clustering topics covered in DM1

1. Partitioning-based clustering

o kMeans, kMedoids

Density-based clustering

™~

o DBSCAN

Grid-based clustering

w

4. Hierarchical clustering

1. Diana, Agnes, BIRCH, ROCK, CHAMELEON

5. Clustering evaluation

i
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Outline

= Hierarchical clustering

= Bisecting k-Means

= An overview of clustering
= Homework/tutorial

= Things you should know from this lecture
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Hierarchical-based clustering

= Produces a set of nested clusters organized as a
hierarchical tree

= Can be visualized also as a dendrogram

o Atree like diagram that records the sequences of

merges or splits & cluster memberships .
0.2k . Nested clusters
o The height at which two clusters are merged in the 3
dendrogram reflects their distance 015r
8
§ 0.1 5
9
. . o 0.05- !
= Aninstance can belong to multiple clusters.
0
0 The assignement though is still hard S
Points
Dendrogram
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Strengths of Hierarchical Clustering

= Do not have to assume any particular number of clusters
= A clustering can be obtained by ‘cutting’ the dendrogram at the proper level
o Cutting based on distance (i.e., | want £ 0.1 distance)

o Cutting based on the number of clusters (i.e., | want 2 clusters)
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Applications of hierarchical clustering 1/3

= The dendrogram of clusters may correspond to meaningful taxonomies

o Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Incertae sedis 4 A
0‘ Aulostomidae (1) == —— =0
Incertae sedis - 2
°—< Centriscidae (2)
S thif Dactylopteroidei =
yngnathiformes -@ .< Dactylopteridae (2) ‘ AN
Callionymoidei
Bootstrap ’< Callionymidac.(4) &.
Q75-89% Incertae sedis (possibly in Syngnathoidei) ) . A
90999 Fistulariidae (1) R
@ 100% Syngnathoidei —
40-< Syngnathidae (3) R e il
Species examined ||
B 25 Creediidae (1)
. 6-10 Mulloidei ‘
Mullidae (5)
H 2425
I I 1 1 I I I I I I I I I I I I 1 I I I 1
100 50 0
Ma

Source: http://currents.plos.org/treeoflife/article/the-tree-of-life-and-a-new-classification-of-bony-fishes/
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Applications of hierarchical clustering 2/3

= The dendrogram of clusters may correspond to meaningful taxonomies

o Dendrogram showing hierarchical clustering of tissue gene expression data with colours denoting tissues.

Cluster Dendrogram

250
|

150 200
|

|

Height
100
1

50
|

0
L

Source: http://genomicsclass.github.io/book/pages/clustering_and_heatmaps.html
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Applications of hierarchical clustering 3/3

= The dendrogram of clusters may correspond to meaningful taxonomies

o USArrests dataset: statistics in arrests per 100,000 residents for assault, murder, and rape in each of the 50
US states in 1973.

Cluster Dendrogram

14
|

10
|

Height
0 2 4 6 8
|

:
o

B
moe B EEc 8.3 = w o= -5-E§ = =
] Ao o B m o mE m :DmE m = = S Em ea 2R
i Ngﬁagggaﬁgg%wsgﬁs%ﬁifaagﬁeﬁ%aa%:
LR ESeRFE 28%2 SREEESETE & EESE‘Q""ED=£¢§—2_E‘E‘5= I
- EL G = = 2 P = = & 2 A= EE il 'E o m'Eq. )
= ur.!ﬂu g =1 < - = £ E%E!ﬂ‘ g\ EEE ﬁx—f E
- FEEg z =3 =i5 == 5 £ 208 z 0 &
Z 3 z Bz = I i « = o
o i =
=

heclust (*, "ward.D2"
. ) Source: https://uc-r.github.io/hc_clustering

Data Mining | @SS19: Clustering 3 13



Hierarchical vs Partitioning

Partitioning clustering

Partitioning algorithms typically have global objectives
e.g., k-Means

Nested clusters

-

pl p2 p3 p4

Dendrogram

Hierarchical clustering algorithms typically have local
objectives
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Hierarchical clustering methods

= Two main types of hierarchical clustering

o Agglomerative or AGNES (Agglomerative Nesting):
= Bottom-up approach
= Start with the points as individual clusters
= At each step, merge the closest pair of clusters
2 until only one cluster (or k clusters) left
o Divisive or DIANA (Divisive analysis):
= Top-down approach
= Start with one, all-inclusive cluster

= At each step, split a cluster until each cluster contains a single
point (or there are k clusters)

2 Merge or split one cluster at a time
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Hierarchical clustering methods

= Traditional hierarchical algorithms use a similarity or distance matrix to decide on which cluster to
split/merge next

o Employed distance/similarity function depends on the application

pl p2 p3 pl2
pl
® 6 o o - 6 o o o
pl p2 p3 p4 P9 pl0 pll pl2 p2
p3
pl2

Proximity matrix
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Agglomerative clustering algorithm

= Most popular hierarchical clustering technique

= Basic algorithm is straightforward

1. Compute the proximity matrix
2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

= Key operation: the computation of the proximity of two clusters

o Different approaches (single link, complete link, .....) which lead to different algorithms

0.2
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Starting situation

m Start with clusters of individual points and a proximity matrix
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Intermediate situation |

= After some merging steps, we have some clusters

s i
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Intermediate situation Il

=  We want to merge the two closest clusters (C, and C;) and update the proximity matrix.

Proximity matrix

i,
J
Ugj‘
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Merging

= Two major questions for merging
o How we identify the closest pair of clusters to be merged?

o How do we update the proximity matrix?
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Distance between clusters

m Each cluster is a set of points

o How do we compare two sets of points/clusters?

Distance?
4—}

= A variety of different methods
Single link (or MIN)

Complete link (or MAX)

Group average

Distance between centroids
Distance between medoids

o 0000 O

Other methods driven by an objective function

B Ward’s Method uses squared error

Data Mining | @SS19: Clustering 3
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Distance between clusters: Single link distance or MIN

= Single link (or MIN) distance between C; and C; is the minimum distance between any object in C,

and any objectin C, i.e.,
dis, (C,.C, )= minx,y{d(x, y)xeC;, yeCj}

o i.e., the distance is defined by the two closest objects (shortest edge)

Data Mining | @SS19: Clustering 3 23



Distance between clusters: Complete link or MAX

= Complete link (or MAX) distance between C; and C; is the maximum distance between any object in C,

and any objectin C, i.e.,
dis, (C,,C,)=max, , d(x y)xeC, yC, |

o i.e., the distance is defined by the two most dissimilar objects (longest edge)
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Distance between clusters: Group average

= Group average distance between C; and C, is the average distance between any object in C; and any

objectin C, i.e.,

2, d(x,y)

XECi ) yECJ

cley

dis,,(C,.C, )=
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Distance between clusters: Centroid distance

= Centroid distance between C; and C, is the distance between the centroid c; of C; and the centroid ;
of C,ie.,

d centr0|ds (C C ): d (Ci J Cj) i b,

C,=

n

Centroid of a cluster
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Example

Dataset (6 2D points)

Point | # Coordinate

y Coordinate
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p2 0.22
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Distance matrix (Euclidean distance)
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Back to the pseudocode of the agglomerative clustering algorithm

= Pseudocode of the algorithm

1. Compute the proximity matrix
2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters
5. Update the proximity matrix
6. Until only a single cluster remains

0.2

0.15F

0.1r

0.05f
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Single link distance or MIN agglomerative clustering algorithm

= Similarity of two clusters is based on the most similar (closest) pair of objects

o Determined by one pair of points

Nested clusters

dis, (Ci,Cj): minx,y{d(X, Y)‘X eCye Cj}
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Short break (5’)

= Given the following 1-dimensional dataset, build a hierarchical
agglomerative clustering using single-link distance

5 11 13 16 25 36 3839 42 60 62 64 67
_
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Single link distance (MIN): strengths

= Can discover clusters of arbitrary shapes

Original points

Two clusters

Data Mining | @SS19: Clustering 3
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Single link distance (MIN): limitations

= Sensitive to noise and outliers

Original points Two clusters

= DBSCAN can be viewed as a robust variant of single link distance

o It excludes noisy points between clusters to avoid undesirable chaining effects.
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Single link distance (MIN): limitations

= Produces long, elongated clusters (chain-like clusters)

Data Mining | @SS19: Clustering 3
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Complete link distance or MAX agglomerative clustering algorithm

= Similarity of two clusters is based on the least similar (most distant) pair of objects

dis, (C,.C, )= maxx,y{d(x, y)\xeC,ye C,-}

o Determined by one pair of points

Nested clusters

pl p2 pa pd po p6
pl | 0.00 [ 0.24 | 0.22 | 0.37 | 0.34 | 0.23
p2 | 0.24 [ 0.00 | 0.15 | 0.20 | 0.14 [ 0.25
p3 | 0.22 [ 0.15 | 0.00 | 0.15 | 0.28 | 0.11
pd | 0.37 [ 0.20 | 0.15 | 0.00 | 0.29 | 0.22
p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39
p6 | 0.23 [ 0.25 | 0.11 | 0.22 | 0.39 | 0.00
0.4F
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03
0.25-
02"
0.15-
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Complete link distance (MAX): strengths

m Less susceptible to noise and outliers and comparing to MIN

Original points Two clusters

CL) .%n

Data Mining | @SS19: Clustering 3

35



Complete link distance (MAX): limitations

= Because it focuses on minimizing the diameter of the cluster, it will create clusters so that all of them
have similar diameter

o If there are natural larger clusters than others, it tends to break large clusters
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Short break (5’)

= Given the following 1-dimensional dataset, build a hierarchical
agglomerative clustering using complete-link distance

5 11 13 16 25 36 3839 42 60 62 64 67
_
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(Group) Average-link distance agglomerative clustering algorithm

= Proximity of two clusters is the average of pairwise distances between objects in the two clusters.

o Determined by all pairs of points in the two clusters

Nested clusters

2.d(xy)

05, 6,)- 4
i™~j

pl p2 pa pd po p6
pl | 0.00 [ 0.24 | 0.22 | 0.37 | 0.34 | 0.23
p2 | 0.24 [ 0.00 [ 0.15 ] 0.20 | 0.14 | 0.25
p3 | 022 [ 0.15 [ 0.00 | 0.15 | 0.28 | 0.11
pd | 037 [ 0.20 | 0.15 | 0.00 | 0.29 | 0.22
p5 | 0.34 | 0.14 | 0.28 | 0.29 | 0.00 | 0.39
p6 | 0.23 [ 0.25 [ 0.11 | 0.22 | 0.39 | 0.00

0.25}
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0.151
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Dendrogram
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(Group) Average-link distance: strengths and limitations

= Compromise between Single and Complete Link

= Strengths

0 Less susceptible to noise and outliers

m Limitations

o Biased towards spherical clusters

Data Mining | @SS19: Clustering 3
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Centroid-link distance agglomerative clustering algorithm

= The distance between two clusters is the distance of their corresponding centroids

diScentroids (CI d Cj ): d (Ci 1 Cj)

= Difference to other measures (often considered bad): the possibility of inversions
o Two clusters that are merged at step kK might be more similar than the pair of clusters merged in step k-1

o For the other methods, distance between clusters monotonically increases (or at worst does not increase)
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Ward’s method

=  Ward’s method or Ward's minimum variance method
= Clusters are represented by centroids

m  The proximity between two clusters is measured in terms of the
increase in SSE (sum of squared error) that results from merging the
two clusters

Dw(C;, C;) = Z (z —75)° + Z ( —rj)° — Z (z — ris)*

zeCy ol zeCy;

r,;: centroid of C,
r;: centroid of C,
r,: centroid of C,

= At each step, merge the pair of clusters that leads to minimum
increase in total inter-cluster variance after merging.
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Ward’s method cont’

m  Ward’s method seems similarly to k-Means: it tries to minimize the sum of square distances of points from their
cluster centroids, but not globally

= Less susceptible to noise and outliers

= Biased towards spherical clusters
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‘ Comparison of the different methods

Group average

Ward’s method

Data Mining | @SS19: Clustering 3
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Hierarchical methods: complexity

= O(N?) space to store the proximity matrix

o Nis the number of points.

=  O(N3) time in most of the cases

0 There are N steps and at each step the size, N?, proximity matrix must be updated and searched

o Complexity can be reduced to O(N? log(N) ) time for some approaches using appropriate data structures
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Hierarchical clustering: overview

= No knowledge on the number of clusters
= Produces a hierarchy of clusters, not a flat clustering
o Asingle clustering can be obtained from the dendrogram
= No backtracking: Merging decisions are final
o Once a decision is made to combine two clusters, it cannot be undone
= Lack of a global objective function
o Decisions are local, at each step
2 No objective function is directly minimized
= Different schemes have problems with one or more of the following:
o Sensitivity to noise and outliers

o Breaking large clusters

o Difficulty handling different sized clusters and convex shapes

= Inefficiency, especially for large datasets
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‘ Outline

= Hierarchical clustering

[- Bisecting k-Means

= An overview of clustering
= Homework/tutorial

= Things you should know from this lecture
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‘ Bisecting k-Means

= Hybrid method, combines k-Means and hierarchical clustering

= ldea: first split the set of points into two clusters, select one of these clusters for further splitting, and so on,
until k clusters remain.

m Pseudocode:

(=]
H

All data constitute one cluster ROOT.
2. The ROOT is partitioned in two clusters, its children
using K-Means for K=2.
3. In each subsequent iteration
2.1. Choose among the leaf clusters the most
inhomogeneous one,
2.2. Partition it into two clusters with K-Means, K=2,
until K leaf clusters are built.

I

= Which cluster to split?
o The one with the largest SSE (worse one)
o Based on SSE and size

a
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‘ Bisecting k-Means

= Anexample
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(a) Iteration 1. (b) Iteration 2. (¢) Iteration 3.
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‘ Outline

= Hierarchical clustering

= Bisecting k-Means

[ = An overview of clustering

= Homework/tutorial

= Things you should know from this lecture
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An overview on clustering

= Intuitively, a cluster is a set of data objects that are similar to one another within the same cluster and dissimilar to the objects
in other clusters

= Cluster analysis: Find similarities between data according to the characteristics found in the data and group similar data
objects into clusters

= Key points in clustering
o Similarity/ distance function

o Learning algorithm

= Anunsupervised learning task

o No clues on the number of clusters, nor in the characteristics of these clusters
= Important DM task: as a stand-alone tool or as a preprocessing step

= Alarge amount of algorithms
0 Partitioning methods
o Hierarchical methods
0 Density-based methods
2 Model-based methods

a
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Outline

= Hierarchical clustering
= Bisecting k-Means
= An overview of clustering

= Homework/tutorial

[ =  Things you should know from this lecture
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Homework/ tutorial

= Homework

0 Use the Elki data mining tool to experiment with clustering algorithms http://elki.dbs.ifi.Imu.de/

o Or Python/ Weka (more limited w.r.t. clustering)

= Readings:
o Tan P.-N., Steinbach M., Kumar V book, Chapter 8.

o Data Clustering: A Review, https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf

o Nando de Freitas youtube video: https://www.youtube.com/watch?v=voN8omBe2r4
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Outline

= Hierarchical clustering
= Bisecting k-Means
= An overview of clustering

= Homework/tutorial

[ =  Things you should know from this lecture
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Homework/ tutorial

= Hierarchical clustering basics
= Agglomerative approach
= Similarity measures between clusters

= Bisecting kMeans
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