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Clustering topics covered in DM1

1. Partitioning-based clustering

 kMeans, kMedoids

2. Density-based clustering

 DBSCAN

3. Grid-based clustering

4. Hierarchical clustering

1. Diana, Agnes, BIRCH, ROCK, CHAMELEON

5. Clustering evaluation

Data Mining I @SS19: Clustering 3

1 2 3 4 5

2



Outline

 Hierarchical clustering

 Bisecting k-Means

 An overview of clustering

 Homework/tutorial

 Things you should know from this lecture

Data Mining I @SS19: Clustering 3 3



Outline

 Hierarchical clustering

 Bisecting k-Means

 An overview of clustering

 Homework/tutorial

 Things you should know from this lecture

Data Mining I @SS19: Clustering 3 8



Hierarchical-based clustering

 Produces a set of nested clusters organized as a 
hierarchical tree

 Can be visualized also as a dendrogram

 A tree like diagram that records the sequences of 
merges or splits & cluster memberships

 The height at which two clusters are merged in the 
dendrogram reflects their distance

 An instance can belong to multiple clusters. 

 The assignement though is still hard 
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Strengths of Hierarchical Clustering

 Do not have to assume any particular number of clusters

 A clustering can be obtained by ‘cutting’ the dendrogram at the proper level

 Cutting based on distance (i.e., I want ≤ 0.1 distance) 

 Cutting based on the number of clusters (i.e., I want 2 clusters)
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Applications of hierarchical clustering 1/3

 The dendrogram of clusters may correspond to meaningful taxonomies

 Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, …)
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11



Applications of hierarchical clustering 2/3

 The dendrogram of clusters may correspond to meaningful taxonomies

 Dendrogram showing hierarchical clustering of tissue gene expression data with colours denoting tissues.
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Applications of hierarchical clustering 3/3

 The dendrogram of clusters may correspond to meaningful taxonomies

 USArrests dataset: statistics in arrests per 100,000 residents for assault, murder, and rape in each of the 50 
US states in 1973.
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Hierarchical vs Partitioning
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Hierarchical clustering methods

 Two main types of hierarchical clustering

 Agglomerative or AGNES (Agglomerative Nesting):  

 Bottom-up approach

 Start with the points as individual clusters

 At each step, merge the closest pair of clusters 

 until only one cluster (or k clusters) left

 Divisive or DIANA (Divisive analysis):  

 Top-down approach

 Start with one, all-inclusive cluster 

 At each step, split a cluster until each cluster contains a single 
point (or there are k clusters)

 Merge or split one cluster at a time
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Hierarchical clustering methods

 Traditional hierarchical algorithms use a similarity or distance matrix to decide on which cluster to 
split/merge next

 Employed distance/similarity function depends on the application
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Agglomerative clustering algorithm

 Most popular hierarchical clustering technique

 Basic algorithm is straightforward

1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

 Key operation: the computation of the proximity of two clusters

 Different approaches (single link, complete link, …..) which lead to different algorithms
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Starting situation 

 Start with clusters of individual points and a proximity matrix
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Intermediate situation I

 After some merging steps, we have some clusters 
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Intermediate situation II

 We want to merge the two closest clusters (C2 and C5)  and update the proximity matrix. 
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Merging

 Two major questions for merging

 How we identify the closest pair of clusters to be merged?

 How do we update the proximity matrix?
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Distance between clusters

 Each cluster is a set of points

 How do we compare two sets of points/clusters?

 A variety of different methods
 Single link (or MIN)

 Complete link (or MAX)

 Group average

 Distance between centroids

 Distance between medoids

 Other methods driven by an objective function

 Ward’s Method uses squared error
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Distance between clusters: Single link distance or MIN

 Single link (or MIN) distance between Ci and Cj is the  minimum distance between any object in Ci

and any object in Cj, i.e.,  

 i.e., the distance is defined by the two closest objects (shortest edge)
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Distance between clusters: Complete link or MAX

 Complete link (or MAX) distance between Ci and Cj is the maximum distance between any object in Ci

and any object in Cj, i.e., 

 i.e., the distance is defined by the two most dissimilar objects (longest edge)


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Distance between clusters: Group average

 Group average distance between Ci and Cj is the average distance between any object in Ci and any 

object in Cj, i.e.,  
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Distance between clusters: Centroid distance

 Centroid distance between Ci and Cj is the distance between the centroid ci of Ci and the centroid cj

of Cj, i.e.,  
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Example
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Dataset (6 2D points)
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Back to the pseudocode of the agglomerative clustering algorithm

 Pseudocode of the algorithm

1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains
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Single link distance or MIN agglomerative clustering algorithm

 Similarity of two clusters is based on the most similar (closest) pair of objects

 Determined by one pair of points
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Short break (5’)

 Given the following 1-dimensional dataset, build a hierarchical 
agglomerative clustering using single-link distance
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Single link distance (MIN): strengths

 Can discover clusters of arbitrary shapes

Data Mining I @SS19: Clustering 3

Original points Two clusters

31



Single link distance (MIN): limitations
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Two clustersOriginal points

 Sensitive to noise and outliers

 DBSCAN can be viewed as a robust variant of single link distance

 It excludes noisy points between clusters to avoid undesirable chaining effects.
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Single link distance (MIN): limitations
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Complete link distance or MAX agglomerative clustering algorithm

 Similarity of two clusters is based on the least similar (most distant) pair of objects

 Determined by one pair of points
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Complete link distance (MAX): strengths
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 Less susceptible to noise and outliers and comparing to MIN
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Complete link distance (MAX): limitations

 Because it focuses on minimizing the diameter of the cluster, it will create clusters so that all of them 
have similar diameter

 If there are natural larger clusters than others, it tends to break large clusters
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Short break (5’)

 Given the following 1-dimensional dataset, build a hierarchical 
agglomerative clustering using complete-link distance
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(Group) Average-link distance agglomerative clustering algorithm

 Proximity of two clusters is the average of pairwise distances between objects in the two clusters.

 Determined by all pairs of points in the two clusters
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(Group) Average-link distance: strengths and limitations

 Compromise between Single and Complete Link

 Strengths

 Less susceptible to noise and outliers

 Limitations

 Biased towards spherical clusters
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Centroid-link distance agglomerative clustering algorithm

 The distance between two clusters is the distance of their corresponding centroids

 Difference to other measures (often considered bad): the possibility of inversions

 Two clusters that are merged at step k might be more similar than the pair of clusters merged in step k-1

 For the other methods, distance between clusters monotonically increases (or at worst does not increase)
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Ward’s method

 Ward’s method or Ward's minimum variance method

 Clusters are represented by centroids

 The proximity between two clusters is measured in terms of the
increase in SSE (sum of squared error) that results from merging the 
two clusters

 At each step, merge the pair of clusters that leads to minimum 
increase in total inter-cluster variance after merging. 
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Ward’s method cont’

 Ward’s method seems similarly to k-Means: it tries to minimize the sum of square distances of points from their 
cluster centroids, but not globally

 Less susceptible to noise and outliers

 Biased towards spherical clusters
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Comparison of the different methods
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Hierarchical methods: complexity

 O(N2) space to store the proximity matrix

 N is the number of points.

 O(N3) time in most of the cases

 There are N steps and at each step the size, N2, proximity matrix must be updated and searched

 Complexity can be reduced to O(N2 log(N) ) time for some approaches using appropriate data structures
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Hierarchical clustering: overview

 No knowledge on the number of clusters

 Produces a hierarchy of clusters, not a flat clustering

 A single clustering can be obtained from the dendrogram

 No backtracking: Merging decisions are final

 Once a decision is made to combine two clusters, it cannot be undone

 Lack of a global objective function

 Decisions are local, at each step

 No objective function is directly minimized

 Different schemes have problems with one or more of the following:

 Sensitivity to noise and outliers

 Breaking large clusters

 Difficulty handling different sized clusters and convex shapes

 Inefficiency, especially for large datasets
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Bisecting k-Means

 Hybrid method, combines k-Means and hierarchical clustering

 Idea: first split the set of points into two clusters, select one of these clusters for further splitting, and so on, 
until k clusters remain.

 Pseudocode:

 Which cluster to split?

 The one with the largest SSE (worse one)

 Based on SSE and size

 …
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Bisecting k-Means

 An example
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An overview on clustering

 Intuitively, a cluster is a set of data objects that are similar to one another within the same cluster and dissimilar to the objects 

in other clusters

 Cluster analysis: Find similarities between data according to the characteristics found in the data and group similar data 

objects into clusters

 Key points in clustering

 Similarity/ distance function

 Learning algorithm

 An unsupervised learning task

 No clues on the number of clusters, nor in the characteristics of these clusters

 Important DM task: as a stand-alone tool or as a preprocessing step

 A large amount of algorithms

 Partitioning methods

 Hierarchical methods

 Density-based methods

 Model-based methods

 ….
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Homework/ tutorial

 Homework

 Use the Elki data mining tool to experiment with clustering algorithms http://elki.dbs.ifi.lmu.de/

 Or Python/ Weka (more limited w.r.t. clustering)

 Readings:

 Tan P.-N., Steinbach M., Kumar V book, Chapter 8.

 Data Clustering: A Review, https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf

 Nando de Freitas youtube video: https://www.youtube.com/watch?v=voN8omBe2r4
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Homework/ tutorial

 Hierarchical clustering basics

 Agglomerative approach

 Similarity measures between clusters

 Bisecting kMeans
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